hler and W. Gey:

s is a consequence of their pressure ce bomb technique pressures are only hich prevents the simultaneously grown . It is worth noting that these authors p) curve near the yield strength.

-Zirconium

with three atoms per unit cell^{15,16}. imilarity it is supposed that its formation $\epsilon \beta$ -Zr (bcc) is diffusionless. It is not yet n the α phase, too¹⁷. The transition from between 50 and 60 kbar at room temperwhich increases with pressure in α -Zr, at the transition by about 18%, but in such drop is observed at all¹⁷. Of the ω -Zr only T_c in the metastable state ared before¹⁸.

essure dependence of T_c of the ω phase influence on the low pressure behaviour, n pressure is comparable to the maximum cell in the tongs, most of the attempts hnique failed because the cells fractured. experiments, in which the pressure came . In none of them any drop in resistoth samples showed a strongly reduced as an enhanced $T_c(p)$, lying distinctly urve for the α phase. After release of ling at room temperature $T_c(0)$ of one other sample was damaged on removal

e the α to ω transition, the opposed sponding clamp apparatus did not fit i thus only be cooled in a He⁴ dewar. ase transition could not be determined. ailable experimental equipment leaves sure and temperature, just in the inter-

K/bar for unannealed and $dT_c/dp = 15 \times 10^{-6}$

963).

let. 8, 575 (1960). Kennedy, G. C.: Phys. Rev. 131, 644 (1963). man, A.: J. Appl. Phys. 35, 732 (1964).

Superconductivity in α - and ω -Zirconium Under High Pressure 329

esting transition region. The observed dependence of the electrical resistance on the pressure was as follows: In a first compression run R increased until the transition was reached, whereupon it decreased. This drop, however, was in none of the cases as great as could be expected. With further increase of pressure R decreased slightly. Any sample, once compressed above 55 kbar, showed a monotonic decrease of R from p=0 up to the highest attainable pressures in each following experiment and a corresponding increase of R upon lowering of pressure. This behaviour corroborates the observation, that the transformation from ω -Zr to α -Zr is strongly retarded.

The experimental points for $T_c(p)$ of the ω phase can be approximated by a straight line, determined by a least squares fit, with the slope $dT_c/dp = 7.7 \times 10^{-6}$ K/bar. The broad superconducting transitions as well as a small residual resistance ratio of about 8 indicate a highly disturbed state of the samples, but annealing at room temperature is of no influence on T_c . If the straight line is extrapolated to zero pressure, $T_c(0)=0.72$ K is found. Although the agreement with the value gained by the piston-cylinder technique* is good, it should not be overestimated because of the uncertainties of such an extrapolation. It should be noted that our value disagrees with that of Tittmann *et al.*¹⁸ for metastable ω -Zr ($T_c(0)=0.65$ K).

Measurements with zirconium from another stock have been performed. This sample showed an unusually high $T_c(0)=0.8$ K, but a dT_c/dp comparable with that of the Koch-Light Zr in the pressure range below 50 kbar. On the other hand, for ω -Zr $dT_c/dp=11.3 \times 10^{-6}$ K/bar, which is distinctly greater than the corresponding value for Koch-Light material. We have no explanation for this at present.

Induced by the high $T_c(0)$ -values, efforts were made to anneal cold rolled and trimmed samples in an ultrahigh vacuum of 10^{-10} Torr at about 1070 K, a few degrees below the transition temperature into the cubic, high temperature β phase**. If the high $T_c(0)$ were caused by lattice defects, this procedure should result in a lowering of these values. This was the case $(T_c(0)=0.5 \text{ K} \text{ for MRC-Zr} \text{ after heat}$ treatment), but at the same time the residual resistance ratio was as low as 4, so that a contamination of the samples had to be supposed. This can be understood by the well known gettering properties of zirconium. The slope dT_c/dp after heat treatment was about twice the previous value of $3.5 \times 10^{-6} \text{ K/bar}$. The lowering of T_c and raise of dT_c/dp agrees with the behaviour observed by Brandt and Ginzburg⁵ after heat treatment and might suggest that their annealed samples had also been contaminated. Unfortunately, these authors do not report data of their residual resistance ratio.

The correct value of $T_c(0)$ for Zr is as yet an open question, even though the value 0.55 K is commonly accepted. T_c is influenced by such phenomena as im-

** We want to thank Dr. P. Flécher and Mr. R. Vincon, Institut für Experimentelle Kernphysik, Universität Karlsruhe, for the performance of this annealing treatment.

^{*} It cannot be stated unequivocally that the sample referred to had totally transformed into ω .